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Abstract 
Genetic  Programming  is very computationally  expensive. 
For most  applications,  the  vast  majority of time is spent 
evaluating  candidate  solutions, so it is desirable to  make 
individual  evaluation  as efficient as  possible. We describe 
a genome  compiler which  compiles  s-expressions to  ma- 
chine code,  resulting in significant  speedup of individual 
evaluations over standard GP systems.  Based  on perfor- 
mance  results  with  symbolic  regression, we show that  the 
execution of the genome  compiler  system is comparable  to 
the  fastest  alternative GP systems. We also demonstrate 
the  utility of compilation  on  a  real-world  problem, loss- 
less image  compression. A somewhat  surprising  result is 
that in  our  test  domains,  the  overhead of compilation is 
negligible. 

1 Introduction 
Genetic  programming  (GP) is an  approach  to  automatic 
programming  in which computer  programs  are evolved us- 
ing  a  process inspired by natural  selection [4]. Briefly, the 
G P  approach works as follows: given an  optimization  ob- 
jective  function,  a  population of individuals, i.e.,  candi- 
date  solution  programs  (typically  represented by Lisp s- 
expressions)  are  generated.  In  a process  analogous  to bio- 
logical  evolution,  this  population is evolved by repeatedly 
selecting  (based  on  relative  optimality)  members of the 
population for reproduction,  and  recombining/mutating 
to  generate  a new population  (Figure 1). 

Genetic  programming is a very computationally  inten- 
sive task.  It  is well-known t8hat  in  many  applications  to 
which  genetic  programming is applied,  the  vast  majority 

of computational resources is used by the evaluate step, 
which evaluates  candidate  solutions  with  respect  to  an 
objective  function.  Thus,  one of the challenges  in  imple- 
menting  a  high-performance G P  system  is  speeding up the 
evaluation  step  as  much  as  possible. 

We  were made  acutely  aware of the need for an efficient 
individual  evaluation process  when we attempted  to  apply 
GP  to  image  compression (see Section  4.2).  Initially, we 
implemented  the  application  using  lil-gp [lo], a standard 
G P  system used by numerous  researchers,  and  found that 
it was prohibitively  slow to  study genetic  programming- 
based image  compression - each run  took  about 2 days 
on  a  296MHz Sun  UltraSparc 2. We therefore  sought  to 
significantly  improve the speed of execution of the GP 
system. 

In  standard GP, s-expressions  are  recursively  evaluated, 
and each evaluation of an  atom requires a recursive  func- 
tion  call.  This  means  that even though  many  atoms  in  the 
set of primitives  can  be  evalua.ted by a single  machine  in- 
struction  (e.g.,  add,  multiply,  independent  variables,  etc.) , 
much  time is spent  in  unnecessary  function  call  overhead 
such as  pushing/popping values onto  the  stack.  This  prob- 
lem is not  unique  to  lil-gp:  Keith  and  Martin [3]  observed 
that  function  call  overhead  can  overwhelm  the  time  actu- 
ally required  to  evaluate  nodes, even with  a very efficient, 
linear  (non-recursive)  s-expression  representation. 

We therefore  sought to  eliminate  as  much of this  func- 
tion  call  overhead  as  possible,  and  implemented a genome 
compiler' which  compiles  s-expressions  into  SPARC  ma- 
chine language  instructions.  In  applications where the 
same  tree is evaluated  many  times  (e.g.,  symbolic regres- 

'As far as we know, this  term was coined by Keith  and  Martin 
in [ 3 ] .  
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t := 0 
initialize P ( t ) ;  
evaluate P ( t ) ;  
while  not  terminate do 

P’(t)  := recombine P ( t ) ;  
P”(t)  := mutate  P’(t);  
evaluate P ( t ) ;  
P ( t  + 1) := select (P”( t )  U Q ) ;  
t := t +  1; 

end  while 

Figure  1: Algorithm  schema  for  Genetic  Programming. P is a 
population of candidate  solutions; Q is a special  set of individuals 
that  has  to  be  considered  for  selection,  e.g., Q = P ( t ) .  

sion,  image  compression),  the  benefits of eliminating  func- 
tion  call  overheads  outweighs  the  overhead of compilation. 

The rest of the  paper  is  organized  as follows: In  Section 
2 ,  we review related work  on  high-performance  evaluation 
mechanisms for genetic  programming.  Section  3  describes 
our genome  compiler  in  detail.  Section 4 presents  some 
empirical  evaluations of genome  compiler  based  genetic 
programming,  comparing  its  performance  with  standard 
lil-gp  and  other  proposed  methods for high-performance 
G P  implementations. We conclude in Section 5 with  a 
discussion of results  and  directions for future work. 

2 Related Work 
A number of researchers  have  addressed  the  problem of 
highly efficient implementations of genetic  programming. 

Keith  and  Martin [3] observed that  the recursive  evalu- 
ation of the  standard  tree  representation of s-expressions 
and used in G P  systems widely  used by the G P  research 
community  such  as  SGPC [la] lil-gp [lo] was inefficient 
because  much time is  used parsing  the  type  token for 
each  node  in the  tree.  They showed that  a  linear,  stack- 
based  internal  representation of s-expressions  resulted  in 
significant  speed  improvement over a  tree  representation. 
However, they  observed that even with  the efficient linear 
representation,  function  calls  still posed a significant  over- 
head,  and  suggested  that  the  implementation of a  genome 
compiler  would  be an  interesting  direction for future re- 
search. 

Perlcis [9] first  demonstrated  the use of genetic  operators 
(crossover and  mutation)  on  a  linear  individual represen- 
tation  using  a  stack-based  virtual  machine  (as  opposed 
to  the  standard s-expression  representation).’  The  idea 

21n contrast,  Keith  and  Martin  used a linear  representation as a 
representation of s-expressions,  and  their  genetic  operators worked 
at   the level of s-expressions,  not  directly  on  the  linear  representation 

of directly  evolving  stack-based linear  programs was also 
used  in HiGP,  a  high  performance,  parallel G P  system 
developed by Stoffel and  Spector [ll], which, like Perkis’ 
system, works  directly  on a population of linear  programs 
for a  virtual  stack  machine. 

An interesting  contrast between  s-expression  based  ap- 
proaches and  stack-based  approaches is in  the  enforcement 
of closure property  (i.e.,  that  guarantees all programs gen- 
erated  are valid and  executa.ble by the  interpreter).  In 
stack-based  approaches,  it is possible that  a  virtual  ma- 
chine instruction which takes  arguments off the  stack will 
not  have  enough  values  available on  the  stack.  In  this  case, 
both of the  above  systems  maintain  closure by ignore  the 
instruction  (i.e.,  they  treat  it  as a NOOP).  In s-expression 
based  genetic  programming,  the  genetic  operators  assure 
that  the  arity of all functions is correct.  This was  cited  as 
an  advantage of using  Lisp  s-expressions  as  the  program 
representation by Koza [4]. Given  the  good  performance 
behavior  reported for stack-based G P  [9, 111 in compara- 
tive  experiments  with  standard  s-expression  based  GP,  it 
is now unclear  whether  there is any  advantage  to  the ease 
of maintaining  the closure property  that  the s-expression 
based  approaches offer. 

While  the  previous  stack-based  approaches used a linear 
representation  internally,  Juille  and  Pollack  implemented 
a system which  applies  genetic  operators  to  s-expressions, 
but  previous  to  execution, compiles them  into  a  linear 
representation for execution on a stack-based  virtual  ma- 
chine [a]. Note that in  this  scheme,  there is no  problem 
of handling possible stack underflow during  execution, be- 
cause the  linear  programs  are  directly  translated  from s- 
expressions that  guarantee  that  the  arity of the  functions 
is correct. 

Nordin  developed  the  Compiling  Genetic  Programming 
System  (CGPS) [7, 81, which manipulates  linear  arrays 
of SPARC  machine  language  instructions. Crossover and 
mutation  are  applied at the  instruction  boundaries,  to en- 
sure  that  the  machine  code  resulting  from  the  operations 
are  valid.  Note that  despite  its  name,  the  Compiling Ge- 
netic  Programming  System  does  not  apply a compilation 
procedure to  its  individuals  at  any  time ~ CGPS is  unique 
in that  it  directly  manipulates  machine-specific  code, as 
opposed to  the  other  approaches, which apply  genetic  op- 
erators  to s-expressions  or  linear  code for a  virtual  stack 
machine. 

The genome  compiler  described  below  combines 1) the 
idea  in  Juille  and  Pollack’s work of applying  genetic  oper- 
ators  to  s-expresssions,  but  compiling  s-expressions  into  a 
representation  that  can  be  executed  more efficiently, and 
2) the  machine  code  representation used by Nordin,  which, 
after  compilation,  results  in  the  fastest3  possible  execution 

(e.g.,  “tree crossovers” were simulated  on  the  linear  representation). 
31n this  paper, when we say f a s t ,  we refer to  execution  speed 



(as  opposed  to  a  virtual  machine). 

3 The  Genome  Compiler 
The  motivation for examining  the  possibility of convert- 
ing  a LISP s-expression  into  a  form  that is more efficient 
to  evaluate  comes  primarily  from  the  observation  that  the 
standard  method of recursive  evaluation involves  much 
more  computational effort than  simply  applying  arith- 
metic  operators  in  sequence. That is, since simple  arith- 
metic  operations  can  be  executed  with  a single instruction 
at the  hardware  level,  our  intuition  tells us that  the  arith- 
metic  portion of the  computation is probably  dwarfed by 
the overhead  associated  with  pushing  and  popping  argu- 
ments  and  return  values  on  the  program’s  stack  during re- 
cursive  s-expression evaluation.  This  observation led us to 
conclude that  translating  the  s-expressions evolved by the 
GP into  a  more  terse  machine 1a.ngua.ge equivalent  would 
greatly  improve  performance. Before ea.ch individual s- 
expression is evaluated,  the  genome  compiler  compiles  it 
(at runtime)  to SPARC machine  language [13] code  as 
described  below. 

The  method of generating  machine  executable  code pro- 
ceeds naturally  from  the  standard recursive evaluation 
procedure.  The  post  order  traversal of the  graph cor- 
responding  to  the given  s-expression  is  analogous to  the 
order of operations  one would perform if the  computa- 
tion were carried  out  in  postfix  form  with a stack.  That 
is,  traversing  the  tree  representation  in  Figure 2 in  post 
order gives  us the  stack-executable  code  in  Figure  3. 

Ll 

p u s h ( x )  
p u s h ( x )  
t l  = POP0 
t 2  = POP0 
p u s h ( t 2  * t l )  
p u s h ( x )  
p u s h ( x )  
t l  = POP0 
t 2  = POP0 

t l  = POP0 
t 2  = POP0 
p u s h ( t 2  + t l )  

p u s h ( t 2  - t l )  

Figure 3: Stack  machine  code  that  computes  the  value of 
the s-expression  in Figure 2. 

Translating  this  stack-executable  code  to  machine  code, 
where  values are  pushed  and  popped  from  locations  in 
memory, is a clear speed  improvement over  recursive 
tree  evaluation, which  involves maintaining  the  program’s 
stack  in  addition  to  these  operations. 

An additional speed improvement is realized  when  one 
considers  the  register file itself a stack,  albeit  one of lim- 
ited  depth.  In  addition  to  a  reduction  in  data access times 
we also gain  the  ability  to effectively pop two operands, 
perform  an  arithmetic  operation  and  push  the  result,  all 
in a single machine  instruction4.  This  is  due  to  the  fact 
that in  many  modern  architectures  arithmetic  instructions 
allow both source  registers  and a destination  register  to 
be specified. 

Representing  floating  point  registers  as f o ,  f l ,  . . . , f 3 1 ,  

with the  constant value x stored  in f31, Figure 4 gives 
the assembly-level  code corresponding  to  the  s-expression 
above.  Three  breaks  in  the  generated  assembly  are la- 
beled (1, 2 ,  and  3);  the  breaks  correspond  to  the  code 
generated so far  when the  traversal  has progressed to  the 
node  indicated  in  the  tree  diagram. 

Our  compiler  directly  generates the  machine  executable 
code that corresponds to  this  assembly-level  code. A key 
point  to  note is that  the C programming  language  pro- 

Figure 2: An example  individual. vides the necessary  flexibility  here: it allows the  program- 
mer to  create  jumps  to code that is generated  at  runtime 
by casting  an  integer  array  to  a  function  pointer [8]. This 

4Note  that  not all function  primitives  in  the  individuals  generated 
for  evaluating  individuals,  and  not  to  the efficiency of GP search by the GP can be executed  in a single instruction.  For  example, 
algorithms.  protected division requires a test  for a denominator of zero. 



are a ,  b ,  c, and d it  returns c if a 2 b and d otherwise. 

..mov ......... fE.3.1.L ....... f.P.0. ................... ..... 

. . .. .................................................................. . ......... 
..sub .......... f& ....... fp? ! .!.E? ..... 
add fpO, f p l ,  fpO 

[qgte] [qgteJ 

mov 
rnov 
sub  

bge 
cmp 

mov 
nop 

mov 
add 
ba 
nap 
mov 

fp31, fpO ! fpO <- x 
f p 3 0 ,   f p l  ! f p l  <- 5 
f p 0 ,   f p l ,  fpO ! fp0 <- x - 5  
fpO. fp29 ! compare 0 ,  x-5 
7 ! branch  on > =  

fp31, fpO 
f p 3 1 .   f p l  

! fp0 < -  x 

fpO, f p l ,   f p 0  ! fpO < -  x - 5  
! f p l  < -  5 

3 ! branch  always 

fp31. fpO I fp0 c -  x 

Figure 4: The s-expression  from  Figure 2 with  correspond- 
ing  assembly-level  code. Numbered  breaks in the code 
correspond to  the code  generated so far when the  post  or- 
der  traversal  has progressed to  the node  indicated in the Figure 5: individual with a conditional and its assem- 
tree diagram. bly equivalent. 

eliminates  the  the  overhead of invoking an  external  com- 
piler. 

The  computational  complexity of compiling  each s- 
expression  down to  machine  executable  code is linear in 
the  number of nodes  in  the  tree  corresponding to the s- 
expression,  the  same as that of recursive tree  evaluation. 
Both  procedures  involve  visiting  each  node  in  the  tree ex- 
actly once and  executing  a  constant  number of operations 
a.t each node. 

It was  previously  noted that  some  function  primitives 
in s-expressions  generated by the  GP  cannot be  executed 
in  a single machine  instruction.  This is particularly  true 
of conditionals,  as  Figure 5 illustrates. For the  purposes 
of this  example,  floating  point  register f31 contains  the 
independent  variable x ,  as before,  and f 2 ~  and f3O con- 
tain  the  constants 0 and 5, respectively. The  arity  four 
primitive i f g t e  is defined  such that if its  four  arguments 

The genome  compiler  approach is similar  to [8] only  in 
that  both  methods involve runtime  machine  code gener- 
ation  and  execution;  in  our  approach  individuals  are  not 
manipulated  at  the  machine  code level. Like our  compiler, 
The  HiGP  system  described  in [ll] takes  the  approach of 
converting  s-expressions into  stack  machine  instructions, 
incorporating  an  extremely  space efficient memory repre- 
sentation of individuals  as well. However, HiGP  performs 
evolution at  this level, using  a  string-based  genetic algo- 
rithms  approach.  Our  system  acts  instead  as a means 
of speeding up  the  execution of standard tree-based G P  
systems.  Our  method is perhaps  most  similar  to [a] in 
that  population  members  are  "pre-compiled"  down  to a 
stack-executable  form;  the  genome  compiler  takes  that  ap- 
proach  one  step  further  and  compiles  the  stack-executable 
instructions down to  the  machine  code level. 



4 Empirical  Evaluation 
We evaluated  the  performance  improvements  obtained us- 
ing the  genome  compiler  on two tasks,  symbolic regression 
and lossless image  compression.  In  both  tasks, each  can- 
didate s-expression is evaluated  many  times, which poten- 
tially  justifies the overhead of compilation. 

Since the genetic  operators  are  applied  to  s-expressions, 
one  might  expect  that given the  same  random  seed,  the 
evolutionary  dynamics of the compiler  system  expected to 
be  exactly  identical  that of standard s-expression  based 
GP (i.e.,  that over the course of the  run,  the  exact  same 
s-expressions  would  be  generated  and  evaluated by both 
systems). However, due to the  sensitivity of floating  point 
computation  to  the  exact  ordering of computations - par- 
ticularly when small  numbers  are  being  manipulated - it is 
possible for the  dynamics of the compiler  based  and  stan- 
dard  systems  to  diverge, even  when the  initial  populations 
and  random seeds  are  identical, a.nd we found  that such 
divergence  occurs  quite  frequently  in  our  runs. Thus, in 
our  experiments, we compare  the  results of multiple  runs 
of the  compiler  and  standard  systems  using  many  random 
seeds. 

Figure 6: Time  to  complete 30 generations of GP on symbolic 
regression of f t a r g e t  = 2' for  the  Genome  Compiler, lil-gp, and 
SGPC  systems.  Mean  and  standard  deviation of 100 runs. All 
timings in this figure were measured  on a 296 MHz UltraSparc 2. 
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4.1 Symbolic  Regression 
Symbolic regression is a canonical  genetic  program  prob- 
lem  in which the  task  is  to  generate  a  program which ap- 
proximates  target  function f t a r g e t .  The  objective  function 
to  minimize  is: 

for numcases randomly  generated fitness cases (test 
points),  where fgp is a candidate GP solution. 

Here, we use symbolic regression to  study  the relative 
speed of the  genome  compiler  compared  with  lil-gp,  as 
well as  other GP systems. 

We used the  test  function f t o r g e t ( x )  = zg. The genome 
compiler  and  standard  lil-gp  systems were configured as 
follows: population=500,  generations=30,  function  set = 
{+, -,  *,  %} (where % is the  protected  division  operator 
[4]), terminal  set=X,  tournament selection  (size=5), 90% 
crossover, 10% reproduction,  no  mutation,  depth  limit 5). 

To observe the  speed benefit of compilation  as  the rel- 
ative  overhead of compilation was varied, we varied the 
number of fitness  cases  between 1 and 1000. Figure 6 
shows the  runtimes (cpu time) of lil-gp  and  the  genome 
compiler,  averaged over 100 independent  runs;  Figure 7 
gives a detail of the region  where the  number of fitness 
cases  varies  between 1 and 20. 

As shown  in  Figure 6,  the  speedup of the  genome  com- 
piler, t l i l -yp/ tgeno,~,e_conzpi le l . ,  improves  as  the  number of 

Figure 7:  Performance on small  numbers of regression  test  cases 
(a zoomed view of Figure  6):Time  to  complete 30 generations of G P  
on  symbolic  regression of f t a r g e t  = 2' for the  Genome  Compiler, lil- 
gp, and SGPC  systems.  Mean  and  standard  deviation of 100 runs. 
All timings in this  figure were measured  on a 296  MHz UltraSparc 
2.  

test cases is increased  (i.e.,  the  relative  overhead of com- 
pilation is decreased),  reaching  a  maximum  speedup of 
a.round 50 times when the  number of test cases is 1000. 

A somewhat  surprising  result is that even  when only a 
single test  case was used for symbolic  regression,  the  per- 
formance of the  genome  compiler  is  no worse than  that of 
lil-gp. This is because  even  with  one  test  case, both  stan- 
dard lil-gp  and  the  genome  compiler need to  traverse  the 
tree  at  least once  (lil-gp  traverses  the  tree  once to evalu- 
ate  it,  the genome  compiler  traverses the  tree once during 
compilation),  and  the  overhead of this  single  traversal is 
quite  signifi~ant.~  In  comparison,  the  computational cost 

'The  small  standard  deviation  for  the  runtimes of the genome 
compiler  system  suggests that  the  compilation  overhead is roughly 
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of actually  executing  the  compact  machine  code  transla- 
tion is almost negligible - note  in  Figure 7 that  the  run- 
time for the  genome  compiler G P  barely  increases as  the 
number of test cases is increased  from 1 to 20. In  other 
words,  compilation  overhead  is  negligible  in  the  genome 
compiler, at least  for  the  set of primitives used in our ex- 
periments. 

4.1.1 Comparison  with  other high  performance 
GP systems 

To  put  the  speedup  enabled by genome  compilation  in per- 
spective, we also briefly compare  our  symbolic  results  with 
other  published  results for high-performance GP systems. 

Stoffel and  Spector  compared  the speed of HiGP 
against  lil-gp  on  symbolic regression of the  target  func- 
tion x9,  where the configuration of lil-gp  they  used 
was: population=500,  maxgenerations=30,  function  set 
= {+, - , *,  %} , terminal  set=X,  tournament selection 
(size=5), 90% crossover, 10% reproduction, no muta- 
tion).  They  compared  the  average  time  per  generation of 
the two systems,  and  found  that  the  maximum  speedup 
( t l i ~ - ~ ~ / t ~ i ~ p )  measured was approximately 5, when the 
depth  limit for lil-gp  was  set to 17 [ll]. The genome 
compiler,  due  to  its use of machine  code, achieves about 
an order of magnitude  speedup over HiGP. 

Because of the use of machine  language  instructions,  the 
CGPS  system of Nordin  and  Banzhaf [8] is expected to be 
closest to  our  genome  compiler  with  respect  to  genome 
evaluation  speed.  Nordin  reported  that  on a polynomial 
symbolic regression task,  CGPS  ran on  average 60 times 
faster  on  symbolic regression than  SGPC,  a  standard re- 
cursive tree  evaluator based G P  system  written by Taclcett 
and  Carmi [12], where both CGPS and  SGPC was running 
on a SPARC IPX. Although we were not  able to directly 
compare  the  genome  compiler  with  CGPS, we can  per- 
form  an  indirect  comparison by comparing  the  genome 
compiler  with  measurements of SGPC speed  on  a 296 
MHz SPARC  Ultra 2 ,  using  the  same  symbolic regression 
problem (f taryet  = x g )  and  the  same  control  parameters 
(Figure 6 ) .  The genome  compiler  performs  roughly 50-60 
times  faster  than  SGPC  running  on  the  same  machine, 
which is comparable  to  the  execution  speeds for CGPS 
reportred by Nordin  and Banzha.f [8]. 

constant(forour  set of primitives  and  depth  limit of 5) - in contrast, 
the  speed of standard lil-gp runs varies significantly  depending on 
the  mix of tree sizes  which are  generated  during  the  run. 

6Note  that Stoffel and  Spector  stopped  the lil-gp runs when the 
optimal  solution was found, while in  our  experiments,  the GP was 
run a full 30 generations. 

Figure 8: Algorithm  schema  for  predictive  coding. M o d e l ( z ,  y) 
is a function  that  takes  the  coordinates of a pixel and  returns a 
predicted  value of that  pixel. I m a g e  and Error  are  two-dimensional 
arrays. 

4.2 Lossless Image Compression 

The  impetus for the  development of the  genome  compiler 
was the need to perform efficient s-expression  execution 
for the  task of lossless image  compression  using a nonlinear 
predictive  coding  algorithm for which the  nonlinear  model 
was automatically  generated  using  a  genetic  programming 
system. We briefly describe  the  application below.  Our 
compression  results will be  presented  in  a  forthcoming  pa- 
per. See [5, 61 for more  details on  predictive  coding  based 
image  compression. 

Predictive  coding is an  image  compression  technique 
which uses a  compact  model of an  image  to  predict pixel 
values of an image  based  on  the  values of neighboring pix- 
els. A model of an  image is a function mode l (x ,  y) ,  which 
computes  (predicts)  the pixel value at  coordinate ( x ,  y) of 
an  image, given the values of some neighbors of pixel ( x ,  y) ,  
where  neighbors  are pixels whose  values  are  known. We 
process the  image  in  raster  scan  order,  and use the  set of 
neighboring pixels {(x-i,y-i), (x,y-l),  (x+l,y-l),(x-i,y)}. 
Linear  predictive coding is a  simple,  special  case of predic- 
tive  coding  in  which  the  model  simply  takes a weighted 
average of the  neighboring  values. Nonlinear models as- 
sign arbitrarily  complex  functions to  the  models.  Apply- 
ing  a  model to  an  image  results  in  an error  signal (the 
differences at each pixel between the value predicted by 
the  model  and  the  actual value of the  pixel  in  the  original 
image.  To  complete  the  compression  process,  the  error 
signal is compressed  using a standard  data compression 
technique  such  as  Huffman  coding. 

If we transmit  this  compressed  error  signal  as well as  the 
model,  then  a receiver can  reconstruct  the  original  image 
by applying  an  analogous  decoding  procedure (see Figure 

Given an  input  image,  our  system uses GP  to  generate 
a  nonlinear  model for the predictive  coding. 

The  terminals  and  functions used  were: 

8).  

Encoder(Mode1,Image) 
for x = 0 to  xmax 

for y = 0 to y m u x  
Error[x,y] = Image[x,y] - Model(x,y) 

Decoder(Mode1) 
for x = 0 to x m a x  

for y = 0 to y m u x  
Image[x,y] = Model(x,y) + Error[x,y] 

I 



values of the  four  neighboring pixels Image[x-i ,y-i],  
Image[x, y-i], Image[x+i,y-i],   Image[x-i ,y].  

0 selected  constant  values: 1, 5, 10, 100. 

0 arithmetic  functions si- ,  *, % (protected  division [4]) 
the  conditional  operator (IFLTE argi  arg2  reti  ret2) 
which returns  the  value of ret1 if argl 5 arg2, and 
the  value of ret2 otherwise. 

(MIN a 6) and (MAX a b) functions which return 
the  minimum  and  maximum values of their two ar- 
guments,  respectively. 

Since the  model is applied to ea.ch pixel in the  image 
this  application would  be  expected t80 benefit from com- 
pilation. 

We ran 5 runs  each of 50 generations of both  the genome 
compiler  and  lil-gp  on a 64 pixel by  64 pixel image  com- 
pression problem.  On a 296MHz UltraSparc 2 ,  the aver- 
age  runtime  for lil-gp was  9177  seconds, and  the average 
runtime  for  the  genome  compiler was 2071 seconds. 

Note  that a significant  percentage of the  current  run- 
time  (about 50% for  the 64  by  64 images  in  the  experi- 
ments) is spent by the  adaptive  Huffman  coder which is 
run  for each individual  evaluation,  and not in the exe- 
cution of compiled  machine  code for individuals;  this ex- 
plains why the  speedup  obtained  (4-5  times)  is  not  as 
impressive  as that for  symbolic  regression. 

Although  the  current  runtime  (several  hours  per  image 
using  the  genome  compiler)  is  still  too slow for practical 
application of the  technique,  the  significant  speedup en- 
abled by compilation  makes  it  much  more  feasible  to ex- 
plore  alternative  search  strategies,  function/terminal  sets, 
etc.  for  this  problem  (i.e.,  runs  that would take  roughly 
a week using standard  GP  can be now be  completed  in 
about  a  day). 

5 Conclusion/Discussion  and Fu- 
ture  Work 

We have  described an  implemented  genome  compiler for 
speeding  up  individual  evaluations in GP.  Experiments 
with  symbolic regression and  image  compression  appli- 
cations show that for  applications  in which individuals 
are  repeatedly  evaluated,  the  genome  compiler  provides  a 
significant  speedup  over standard s-expression  based G P  
systems  as well as  virtual  stack  machine based systems; 
the  speedup over conventional G P  systems  written in C is 
comparable to CGPS, the  fastest  reported GP implemen- 
tation  in  the  literature.  On  extremely  computationally 

7The  compression  ratios  obtained by this  system  are  promising, 
but  are  beyond  the  scope of the  present  paper. 

expensive problems  such  as  image  compression,  the  speed 
improvement  that  the  genome  compiler offers makes  the 
application of s-expression  based GP to  the  problem  much 
more  feasible.  Furthermore, we showed that  the 0verhea.d 
of compilation  can  be  negligible, so that  the speed  benefits 
of compilation  can  be  significant even  when the  number 
of times  individuals  are  repeatedly  evaluated  is  small.8 

Obviously,  raw  execution  speed is not  the  only  impor- 
tant  factor  in  evaluating a G P  system.  The  relative  merits 
of s-expression  based G P  vs.  alternatives  such  as  stack- 
based GP and  CGPS is still  an  open  research  problem 
~ with  respect to search  effort,  s-expression  based GP 
seems to  do  better  on  some  problems, while  stack-based 
a.pproaches  do  better  on  others  (c.f., [9, 13). Likewise, the 
dynamics of CGPS in  comparison  to  traditional GP and 
stack-based G P  are  not  fully  understood  yet.  Previous 
work had shown that  alternative  approaches  such  as  stack- 
based G P  and  CGPS  are  capable of significantly  faster ex- 
ecution of s-expressions than  traditional  s-expression  GP. 
Our work  shows that by using a compiler  to  remove  func- 
tion  call  overhead,  s-expression  based G P  can  be  compet- 
itive  with the  fastest  alternative  approaches  with  respect 
to execution  speed. 

A  disadvantage of the  genome  compiler  approach is that 
the  implementation is machine specific. In  comparison, 
G P  systems such as  HiGP which  use virtual  stack-based 
machines  are  machine  independent, while  being signifi- 
cantly  faster  than  traditional  s-expression  based G P  sys- 
tems.  A  genome  compiler  that  compiles  to  a  virtual  ma- 
chine  code (like that of Juille  and  Pollack)  could possi- 
bly yield execution  speeds  comparable to  virtual  stack- 
machine GP. 

Finally,  another  interesting  direction  in which to  extend 
would  be to  implement  compiler  optimizations which  use 
editing operations [4] or standard compiler  optimization 
techniques to collapse instructions  together, removes re- 
dundant  operations,  reorder  operations,  etc.,  to  further 
speed up  execution.  Although  this would add  additional 
compilation  overhead,  the  benefits  may  be  worthwhile for 
applications such as  image  compression  in  which  the  indi- 
vidual is evaluated  many of times. 
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